Numerical Stability of Partitioned Approach in Fluid-Structure Interaction for a Deformable Thin-Walled Vessel
نویسندگان
چکیده
Added-mass instability is known to be an important issue in the partitioned approach for fluid-structure interaction (FSI) solvers. Despite the implementation of the implicit approach, convergence of solution can be difficult to achieve. Relaxation may be applied to improve this implicitness of the partitioned algorithm, but this commonly leads to a significant increase in computational time. This is because the critical relaxation factor that allows stability of the coupling tends to be impractically small. In this study, a mathematical analysis for optimizing numerical performance based on different time integration schemes that pertain to both the fluid and solid accelerations is presented. The aim is to determine the most efficient configuration for the FSI architecture. Both theoretical and numerical results suggest that the choice of time integration schemes has a significant influence on the stability of FSI coupling. This concludes that, in addition to material and its geometric properties, the choice of time integration schemes is important in determining the stability of the numerical computation. A proper selection of the associated parameters can improve performance considerably by influencing the condition of coupling stability.
منابع مشابه
Partitioned Time Stepping for a Parabolic Two Domain Problem
There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report...
متن کاملA Coupled Momentum Method to Model Blood Flow in Deformable Arteries
Blood velocity and pressure fields in large arteries are greatly influenced by the deformability of the vessel. However, computational methods for simulating blood flow in three dimensional models of arteries have either considered a rigid wall assumption for the vessel or significantly simplified geometries. Computing blood flow in deformable domains using standard techniques like the ALE meth...
متن کاملFluid-structure partitioned procedures based on Robin transmission conditions
In this article we design new partitioned procedures for fluid–structure interaction problems, based on Robin-type transmission conditions. The choice of the coefficient in the Robin conditions is justified via simplified models. The strategy is effective whenever an incompressible fluid interacts with a relatively thin membrane, as in hemodynamics applications. We analyze theoretically the new...
متن کاملExperimental and Numerical Studies on the Characteristics of Simple and Multi-cell Shapes of Quasi-hemisphere Thin-walled Structures
Thin-walled energy absorbers are used to reduce accident induced damages. In this study, thin-walled stainless steel structures in quasi-hemisphere geometry were subjected under quasi-static loading with Santam 150KN apparatus. Experimental results were compared with results of numerical simulations by LS-DYNA and it was shown that there is a good agreement between experimental and numerical r...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013